RSA BSAFE

From Glitchdata
Jump to navigation Jump to search

RSA BSAFE is a FIPS 140-2 validated cryptography library offered by RSA Security. From 2004 to 2013 the default random number generator in the library contained an alleged kleptographic backdoor from the American National Security Agency (NSA), as part of its secret Bullrun program.[1]

SSL-C

The SSL-C library is an SSL toolkit in the BSAFE suite. It was originally written by Eric A. Young and Tim J. Hudson, as a fork of the open library SSLeay, that they developed prior to joining RSA.[2][3] Like SSLeay, SSL-C supported SSLv2, SSLv3, TLSv1; while it also supports X.509v1 and X.509v3.[4] SSL-C was first released in 1999.[5] The algorithm was one of several available in the libraries that users were able to choose from.[6]

Dual_EC_DRBG backdoor

From 2004 to 2013, the default cryptographically secure pseudorandom number generator (CSPRNG) in BSAFE was Dual_EC_DRBG, which contained an alleged backdoor from NSA, in addition to being a biased and slow CSPRNG.[7] The cryptographic community had been aware that Dual_EC_DRBG was a very poor CSPRNG since shortly after the specification was posted in 2005, and by 2007 it had become apparent that the CSPRNG seemed to be designed to contain a hidden backdoor for NSA, usable only by NSA via a secret key.[8] In 2007, Bruce Schneier described the backdoor as "too obvious to trick anyone to use it."[8] The backdoor was confirmed in the Snowden leaks in 2013, and it was insinuated that NSA had paid RSA Security US$10 million to use Dual_EC_DRBG by default in 2004,[1] though RSA Security denied that they knew about the backdoor in 2004. The Reuters article which revealed the secret $10 million contract to use Dual_EC_DRBG described the deal as "handled by business leaders rather than pure technologists".[1] RSA Security has largely declined to explain their choice to continue using Dual_EC_DRBG even after the defects and potential backdoor were discovered in 2006 and 2007, and has denied knowingly inserting the backdoor.[9]

Template:Quote

As a cryptographically secure random number generator is often the basis of cryptography, much data encrypted with BSAFE was not secure against NSA. Specifically it has been shown that the backdoor makes SSL/TLS completely breakable by the party having the private key to the backdoor (i.e. NSA).[8] Since the US government and US companies have also used the vulnerable BSAFE, NSA can potentially have made US data less safe, if NSA's secret key to the backdoor had been stolen. It is also possible to derive the secret key by solving a single instance of the algorithm's elliptic curve problem[8] (breaking an instance of elliptic curve cryptography is considered unlikely with current computers and algorithms, but a breakthrough may occur).

References

Template:Reflist

External links

Template:Cryptographic software Template:SSL/TLS

Template:Portal bar